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RANDOMLY FLUCTUATING FLOW IN A CHANNEL DUE TO RANDOMLY 

FLUCTUATING  PRESSURE  GRADIENTS 

by  Morris  Perlmutter 

Lewis  Research  Center 

SUMMARY 

A randomly  fluctuating  pressure  gradient of a stationary  Gaussian  Markovian  form 
will  cause a randomly  fluctuating  velocity  to  be  superimposed on the  steady  incompres- 
sible flow in a channel.  Correlations,  spectra,  and  frequency  response  functions  for  the 
random  functions a r e  given.  Random pressure  signals  were  generated  using  Fourier 
s e r i e s  expansion  with  coefficients  randomly  picked  from  distributions  whose  parameters 
were  obtained  from  the  spectra of the  pressure  signal.  The  random  velocity  signals 
were  then  obtained  from  the  pressure  signal  by  use of the  frequency  response  function 
calculated  from  the  equation of motion.  The  increased  power  loss due to  the  fluctuations 
is given,  and  the  random  pressure  and  velocity  signals  are  compared  for  amplitude,  fre- 
quency,  and  time  lag. 

INTRODUCTION 

In many  practical  situations,  flows  in  channels wi l l  have  random  pressure  gradient 
fluctuations.  It is of interest  to  understand  the  effect of the  randomly  fluctuating  pres- 
sure  gradient on the  character is t ics  of the flow. 

Previously,  there  have  been  several  analyses on the  effect of sinusoidally  varying 
pressure  gradients on channel  flows  (refs. 1 and 2). Only recently,  however,  has  there 
been  an  increasing  interest  in  systems  with  randomly  fluctuating  characteristics.  Some 
recent  work on this  subject w a s  on heat  conduction  in  solids  with  randomly  varying  ex- 
ternal  temperatures or  internal  heat  generation  (refs. 3 and 4). An analysis of the  effect 
of randomly  fluctuating  fluid  velocity  in a heated  channel on the wall  heat  transfer is 
given  in  reference 5. 

The  purpose of the  present  analysis is to  study  the  effect of imposing upon a steady 
pressure  gradient  and  steady  incompressible flow in a channel a randomly  fluctuating 
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pressure  gradient  component.  Since  the  fluid is considered  incompressible,  the  pres- 
sure  gradient is instantaneously  imposed  throughout  the  channel.  This  random  pressure 
gradient  fluctuation will  cause a random  fluctuating  component of velocity  to be imposed 
on the  steady  velocity  in  the  channel.  The  analysis is restricted  to  channel  regions suf- 
ficiently  downstream  from  the  channel  entrance so that  entrance  effects  can be neglected. 
The  analysis  gives  the  mean  square  value of the  velocity  fluctuation  across  the  channel 
as well as the  increased  power  loss  in  pumping  the  fluid  due  to  the  fluctuations  in  the 
velocity. 

When a random  sampling or  Monte Carlo  approach is used, a specific  pressure 
gradient  signal  can  be  generated  from a given  power  spectrum.  This  calculation  can be 
rapidly  carried out  by use of the  fast  Fourier  transform  method of calculation  recently 
developed  by  Cooley  and  Tukey  and  discussed  in  references 6 to 8. The  randomly  vary- 
ing  pressure  gradient  signal is used  to  find  the  corresponding  fluctuating  velocity  signal 
at  various  positions  across  the  channel.  This  can  be  calculated  through  use of the  mo- 
mentum  equation. These  results  can  be  useful,  for  instance,  in  numerical  convective 
heat-transfer  calculations  in which numerical  values  for  the  randomly  fluctuating  veloc- 
i ty   are   required as input to  calculate  wall  heat  transfer. By generating a random  signal 
with a given  spectrum  by  the  use of model  sampling,  these  signals  can  be  used as input 
for  numerical  solution of nonlinear  equations.  The  resulting  numerical  output  signal  and 
spectra  can  then  be found numerically.  These  output  results  can  be  analyzed  numerically 
for  such  statistical  characteristics as ra te  of zero  point crossing.  Solutions  to  nonlinear 
problems with random  input a r e   v e r y  difficult t o  obtain  by  the  more  usual  analytical  pro- 
c  edur  es. 

SYMBOLS 

an,  bn 
d 

f 

f O  

fP  
H 

I H I  

h 

i 

K 

2 

complex  coefficients 

spacing  between  parallel  plates 

frequency 

frequency  increment,  l/Tp 

maximum  frequency 

frequency  response  function 

gain  factor 

weighting  function or impulse  response  function 

unit  imaginary  number 

kn 



N 

P 

RXY 

S 

T 

TP 
t 

A t  

U 

U 
S 

number of samples 

pressure  gradient 

correlation (x, y) 

mean  square  power  spectral  density 

t ime 

period of record 

dimensionless  time,  vT/d 

time  between  sample 

fluid  velocity 

steady  dimensionless  velocity, -vpUs/d Ps 

2 

2 

v transient  dimensionless  velocity, -vpUt/d Ps 

Y coordinate  across  channel 

YK 4 sin KY/K 

y dimensionless  coordinate  across  channel, Y/d 

y dimensionless  pressure  gradient, Pt/Ps 

A measure of ra te  of fluctuation of pressure  signal 

h dimensionless  measure of rate of fluctuation of pressure  signal, Ad /V 

v kinematic  viscosity 

p density 

o2 variance  measure of pressure  fluctuations 

7 dimensionless  time  difference,  t2 - t l  

2 

2 

Y 

cp phase  factor 

o angular  frequency, 27rf 

( ) ensemble  average 

* complex  conjugate 

Subscripts: 

F fundamental  frequency or  lowest  frequency, l/Tp 

H related  to  frequency  response  function 

I imaginary 
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k 

R 

S 

t 

Y 

0 

finite  spatial  sine  transformed  variable 

real 

steady  component 

fluctuating  component 

related  to  pressure  signal 

Fourier  time  transformed  variable 

ANALYSIS 

For viscous  incompressible flow  between  parallel  plates with constant  properties  in 
the  fully  developed flow region  (see  fig. 1) the  momentum  equation  can  be  written as 
(ref. 2) 

au a2u 
aT P ay2 
- = - 2 P(T) + I/-- 

We can  let  the  velocity  and  the  pressure  gradient  consist of a steady  part  and a nonsteady 
part 

u = us + Ut 

P = Ps + Pt 

Then  equation (1) can  be  rewritten as 

o = ” +  pS a2us 
V- 

P ay2 

aut - Pt a2ut 
” - - + v- 
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Normalizing  the  variables as follows 

we  obtain for equations  (3a)  and  (3b) 

at 
aY2 

There is both a particular  and a homogeneous  solution  to  equation  (4b).  Since we are 
interested  in  times  after  the  initial  transients  have  decayed, we need not be concerned 
about  the  homogeneous  solution  and we can  use  Fourier  transforms  to  obtain  the  solution 
t o  equation  (4b).  The  Fourier  transform (FT) pair  can be written as 

vu = L'" v e - iwt  dt 

v = L'm v  eiwt df where w = 2nf 
W 

Taking  the  FT of equation  (4b)  gives 

Since  the  velocity  must be ze ro  at the walls of the  channel, we  can  solve  equation (6) by 
using  finite  sine  transforms 

v = 2 Vwk sin kny 
k= l  



Then  equation (6) becomes 

iwvwk = 2 
ywk - Vwk 

where 

and 

K = k r  

By  solving for vwk  and  taking  the  inverse  finite  Fourier  transform, we obtain 

vu = Y ( p  

where 

H =  
k=l ,  c 3, 

yK 

5 K + i w  2 

-icpH 
= HR + iH - lHle  1 -  

where YK = 4 sin Ky/K. The H is sometimes  called  the  frequency  response  function 
(ref, 9, p. 42), IH 1 the  gain  factor,  and ‘pH the  phase  factor,  where 

[HI = HR + HI 2 2 2  

-1 I cpH = t a n  - 
H 

HR 

and 
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HR = 
k=l ,  z 3, 

m 

YKK2 

5 K + a  4 2  

HI = -w 1 yK 
K + w  4 2  

k=l,  3 

The  gain  factor is plotted  in  figures 2 and 3; the  phase  factor is plotted  in  figure 2 
and is discussed  more  fully later where  used.  Notice  that  equation (9) can be written as 

This  shows  that  the  amplitude of the  Fourier  transform of v is given  by  the  product of 
the  absolute  values of H and y with a phase  shift  given  by  the  phase  angle qH + 4oy- 

W e  can  solve  equation (9) for v by  taking  the  inverse  transform.  Using  the  convolution 
theorem (ref. 10,  p. 26) on  equation (9) gives 

where h is the  weighting  function  given  by 

2 Y K e  
-K2(e) for 8 > 0 

k=l ,  3, 5 

0 fo r  0 < O  

The h and H are a Fourier  transform  pair .  We can now Write the  equation  for the 
fluctuating  velocity as 

v(t) =st h(t - 6, y)y(6)d6 
6=-00 
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or  

The cross correlation of the  pressure  and  velocity  fluctuations  can be obtained as 
follows.  From  equation (17)  we can  write 

Since  the  process is stationary,  by  taking  ensemble  averages, w e  can  write  equation (18) 
as 

where  t2 - t l  = 7.  Since  the cross spectrum  is   the  Fourier  transform of the  cross  cor- 
relation,  by  using  the  convolution  theorem as before, we  can  write 

S F ( d  = H(o)Syy(w) (20) 

We can  find  the  autocorrelation as 

Ensemble  averaging as before  gives  the  velocity  autocorrelation 

We can  write  the  power  spectrum as 

8 



This  gives 

sVv(w) = H*(w)S (w) = H*(w)H(w)S (w) V w 

This  shows  the  velocity  spectrum is equal  to  the  pressure  spectrum  times  the 
square of the  gain  factor. 

Pressure  Gradient  Correlations  and  Power  Spectrum 

A common  form of random  fluctuations  encountered  in  physical  systems is called a 
stationary  Gaussian  Markoff  random  process.  Markoff  processes are random  processes 
whose  relation  to  the  past  does  not  extend  beyond  the  immediately  preceding  observa- 
tion. A s  is 
function  for 

shown  in  reference 11, page 215, and  reference 12, the  autocorrelation 
this  random  process is given  by 

where 

(T = R (0) e ( y  ) 2  2 
Y YY (27) 

The  rate of fluctuation A and  the  time  span  T  have  been  nondimensionalized to be 
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The  Fourier  transform of R gives  the  power  spectrum of the  pressure  fluctua- YY 
tions as a simple  Lorenzian  form: 

The a2 is a dimensionless  measure of the  amplitude of the  random  fluctuations 
( y ) . The  larger  the  value of a2 the  larger  the  amplitude of the  pressure  fluctuations. 
The X is a dimensionless  measure of the  average  number of fluctuations  per  unit  time. 
It  can  also be considered as the  inverse of the  dimensionless  characteristic  decay  time 
of the  autocorrelation.  The  larger  the  value of X ,  the  greater  the  fluctuation  rate of 
the  signal.  The  power of the  pressure  signal is given  by  the  integral of the  power  spec- 
trum  over all frequencies.  This  can  be  written as 

2 Y 
Y’ 

R (0) = S d f = a  = ( y )  2 2 
YY Y 

The  normalized  power  spectrum  for  the  pressure  gradient  fluctuations sY /<  y2 )  is 
plotted  in  figure 3 for  different  values of the  rate of fluctuation  parameter X.  It  can  be 
seen  that  for  smaller  values of X much  more of the  spectral  power is located  in  the 
lower  frequencies  since  the  frequency  band  for X of 0. 1 is much  narrower  than  in  the 
case  for X = 100. 

Fluctuating  Velocity  Mean,  Correlations,  and  Power  Spectrums 

The  pressure-velocity  cross  correlation  for  the  present  case  can  be  written  using 
equations (15), (19), and (26) as 

far 7‘ 0 
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This  can be integrated  to  give 

k=l ,   3 ,  5 X + K2 

yK eXT 

K2 + X 
for  7 < 0 

k = l ,   3 ,  5 

Also  the  cross  spectrum  can be written  using  equations ( lo ) ,  (20), and (29) as 

K + i w  X + w  2 2  
k=l ,  3, 5 

The  result  in  equation (32) can  also  be  obtained  by  taking  the FT of equation (31). 

(15),   (22),  and (31) as 
In a similar  manner we can  calculate  the  velocity  autocorrelation  from  equations 

This can  be  integrated  to  give 

RW(T) = D; 2 ?[e2- (ZJ 
L - X X + K   X + L  K + L  k = l ,  3 1 = 1 , 3  

Similarly,  we  can  write  the  velocity  fluctuation  power  spectrum  using  equations (12), 
(25),  and (29): 

(3 4) 

Sw(w) = [H(w) 1 2 S (w) = YY (3  5) 
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From  equation (16) we can see that  the  ensemble  average of the  fluctuating  velocity 
(v) at any  given  y is zero  since  the  ensemble  average of the  fluctuating  pressure gradi- 
ent ( y )  is zero. 

The  mean  square  velocity  (v ) can be obtained  from  equation (34) since 2 

These  resul ts  are shown  in  figure 4. Notice  that  the  mean  square  velocity is equal  to 
the  total  power of the  velocity  spectrum 

The  power or the  mean  square  velocity is given  by  the  product of the  square of the  gain 
factor  times  the  pressure  spectrum  integrated  overall  frequency.  From figure 2 we 
can see that  the  magnitude of the  gain  factor is smaller  near  the wall (y = 0. 1) compared 
to  the  centerline  (y = 0. 5), so that  the  mean  square  velocity is smaller  near  the wall as 
compared  to  the  centerline.  The  mean  square  velocity  goes  to  zero  at  the wall in  fig- 
ure  4, as would be  expected  from  the  zero wall velocity  boundary  condition.  The  gain 
factor  in  figure 2 is greatest at the  lower  frequency  and  has a high-frequency  cutoff. 
Since  the  spectrum  for  the  pressure  gradient (fig. 3), is also  greater  at  the  lower fre- 
quencies  for low values of X as compared  to  the high X case,  the  mean  square  velocity 
will be larger for  the  lower  values of X, as can  be  seen  in  figure 4. 

The  fluctuating  velocity  power  spectrum  given  by  equation (35) normalized  by  the 
total  power of the  spectrum at a given  position  in  the  channel Svv(y, f)/Rvv(y, 0) is a l so  
shown in  figure 3. These  curves  are  discussed  more  fully later. 

Power  Dissipation  Due  to  Velocity  Fluctuations 

It is desirable  to know how much  additional  power  must  be  supplied  to  the flow sys-  
tem  to  maintain  the  same  average flow rate  for  the  fluctuating flow as compared  to  the 
steady flow case. A s  shown in  references 1 and 2, the  external  rate of work  done  by  the 
pressure  force we is equal  to  the  sum of the  rate of increase  in  kinetic  energy Ke and 
the  ra te  of dissipation of energy  due  to  internal  friction wf: 

12 



This  can  be found also by  multiplying  the  momentum  equation (1) by  velocity  and  inte- 
grating  across  the  channel  to  obtain 

where 5 is the  average  across  the  channel of some  quantity. 
If we  then  take  the  ensemble  average,  the  rate of change of the  kinetic  energy  term 

will  be zero  because  the  process is stationary. We then  have  the  external rate of work 
done  by  the  pressure  force we equal  to  the  rate of dissipation of energy  due  to  external 
friction wf 

To find the  rate of dissipation of energy  due  to  internal  friction we can  then write 

If we let w be  the  rate of dissipation  due  to  steady  flow,  the  ratio of increased  dis- 
sipation  due  to  the  unsteady flow over  the  steady flow dissipation  can  be  written as 

f ,  s 

Integrating  equation  (31b)  over  y  and  substituting  into  equation (42) give 

Wf - w 
f ,  '= 960; & 1 

k= 1, 
W 

f ,  s K (K + h )  
2 2  

(43) 

A plot of equation  (43) is given  in  figure 5 as a function of the  fluctuating  rate  param- 
e t e r  A .  As  h becomes  very  large,  that is, fluctuations of the  pressure  gradient be- 
come  very  rapid,  the  frictional  power  loss  reduces  to  the  steady  power  loss.  The  fric- 
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tional  power  loss  increases  with  smaller  values of h or slower  fluctuations of the 
pressure  gradient. 

Generation of Random  Signal  by  Model  Sampling 

It would be helpful  in  certain  cases to be  able to  generate a random  signal  analyti- 
cally on the  computer  consistent with the  power  spectrum of the  signal.  This  would be 
useful,  for  instance,  in  obtaining  numerical  solutions or various  other  statistical  char- 
acterist ics of linear or  nonlinear  equations of random  systems  that  may  be  difficult  to 
obtain  by more  usual  analytical  procedures.  The  random  signal  can  be  obtained  by 
writing  the  signal  in  terms of a Fourier series expansion.  The  coefficients of the ex- 
pansion  can  be  related  to a random  distribution  whose  parameters  can  be  obtained  from 
the  power  spectrum. We can  then  use  random  sampling  to  choose  the  coefficients  from 
a distribution  with  the  appropriate  parameter  and  thus  obtain  the  coefficients of the 
Fourier  expansion. We can  then  make  use of the  fast  Fourier  transform  method (refs. 
6 to  8) to  solve  for  the  signal  given  the  coefficients.  The  details  are  given  in  the  next 
section. 

Relation  Between  Power  Spectrum  and  Fourier  Transform 

Fi rs t  we must  relate  the  power  spectrum  to  the  Fourier  transform of the  random 
signal.  This  can be done as shown  in  reference 12, page 132. We can  define a function 
gYy(7) given  by 

w (7) = lim - f +T’2 y(t)y(t + 7)dt 
T-a) T -T/2 

Using  Parsevel’s  formula  and  the  time  shift  theorem (ref. 10, pp. 14 and 27),  we can 
write 

Taking  the  ensemble  average of equation  (44)  gives 

(44) 

(gW) = lim - IT/2 R (7)dt = R (7) 
T-a) T  -T/2 YY YY 
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Taking  the  ensemble  average of equation (45) gives 

Since  the  power  spectrum  and  correlation  form a Fourier  transform  pair ,  we can  write 

This,  then,  relates  the  power  spectrum  to  the  mean  square of the  Fourier  transform 
of the  random  signal. 

Discrete  Fourier  transforms. - When a waveform is to be analyzed on a digital  com- 
puter,  it is the  discrete  Fourier  transform  that  must  be  used.  This  can  be  derived  from 
the  usual  Fourier  transform as shown  in  reference 11, page 56, as follows. 

If y ( t )  is periodic  in  T we can  write  the  Fourier  expansion P’ 

where 

We can  see  from  equation (48) that 

Similarly, if yw is periodic  in f we can  write 
P’ 
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where 

We can see that,  similarly, 

lim (f d ) = y(t) 
fp-m p (53) 

If we  take  the  time  between  sample  values of yk as At, we can  take N samples 
s o  that N A t  = T Then,  assuming  that At  = l / f  we  can  write  equation (48) as 

P' P 

We can  also  write  equation  (51),  assuming  that N Af = f as 
P' 

Since an can be related  to  the  Fourier  transform 'y, by  equation  (50),  equations  (54) 
and (55) form a discrete  Fourier  transform  pair   that  is an  approximation of the  Fourier 
integral  transform  pair. It can be shown (ref. 6) that  in  fact  equations  (54)  and  (55) are 
a discrete  transform  pair  with  reversible  mapping  in  its own right. 

Fast Fourier ~~ transform. - A numerical  method  for  evaluating  either  equation (54) 
or (55) in a very  efficient  manner on digital  computers  has  been  developed  called  the 
fast   Fourier   t ransform (refs. 6 to  8). One implementation of the fast Fourier  transform 
is available as an  IBM-scientific  subroutine  package  called HARM/DHARM. Many 
others are also  available. 

Use of the  fast  Fourier  transform  allows  the  spectrum  to  be found by  taking N 
samples of a given  signal  y(t) of length T in  time  increments At such  that 

P 
N At = Tp.  Using  the  fast  Fourier  transform  method, we can  readily  solve  for  the  real 
(an, R) and  imaginary (a ) Fourier  expansion  components  in  equation  (55).  Repeating 

n, 1 k 
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I 

and  s imilar ly   (a2 ) . The  spectrum of y(t) can  then be obtained  from  equations (47) 
and (50) as 

n, R 

Gaussian  random  process. - Equation (54) can be rewritten  by  letting 
an = an, + ia to  obtain 

n, 1 

N/2 
rk = (an, R + ia n, I )(cos - 2nnk + i sin - 

n=- N/2 N N 

2 ank 

2nnk) ( n, 
sin - cos - - a sin- + i a 2 n n k  

N n, I N N + an, I cos g)] N 
n= - N/2 

(57) 

Since yk is a real function,  the  imaginary  term  in  the  right  side of equation (57) must 
be zero. If a is an  even  function  around  n = 0, a- and if a is an  
odd  function, a-n, I - - -an, I. Then we can  see  that 

n, R n, R = "n, R' n, I 

N/2 -1 N/2 
an, sin - 2 m k  - - an,R sin- + sin - = 0 (58) 2a* an, R 

2 ank 
N n=- N/2 n=-N/2 n= l  

Similarly, 

N/2 
an, I cos - = o 2 nnk 

N n= - N/2 

so  that we now have 
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We can  assume a Gaussian  random  process  (ref. 12, p. 155),  that is, a process  where 
the  distribution of y at different  times [y(tl), y(t2), . . .] is a Gaussian  distribution. 
This  process is commonly  used as an  idealization of many  natural  phenomena  associated 
with  the  superposition of a large  number of many  small  effects.  Since an can be seen 
as a summation of Gaussian  variables  from  equation  (55), an must  also be a Gaussian 
distribution  (ref. 12,  p.  78).  It is shown  in  reference 12,  page  160,  that  for a Gaussian 
random  process  the  following  conditions are true: 

( an, Rak,  R) = ( 'n, Iak, I) = 

Then,  equation  (55)  can be written as 

I n 

S = 2T  (a")  when n#O 1 w=n2s/T P n  
P 

However,  since a is zero when  n = 0, from  equation  (56) we have 
n, 1 

= T  ( a  ) 2 
P O  

Model  sampling  to  generate  signal. - To  generate a random  signal  y(t) we can  use 
equation  (54)  and  the  fast  Fourier  transform  program.  The  terms a and a are 
random  variables  given  by  the  joint  Gaussian  distribution 

- . .  - 

n,  R n, 1 

Following  the  method  given  in  reference  13,  page  39,  we  can  randomly  choose  values of 
a and a that wil l  satisfy  the  distribution of equation  (63)  by  using  the  following 

n,  R  n, 1 
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II 

equations: 

1/2 
a = @(a:)) (-ln  R,)l12 COS 27rRQ 

n, R 

where Re and  Rr are two  different  random  numbers  uniformly  distributed  between 
0 and 1. The  values of R can  readily be generated  by  the  computer.  The  values of (an) 
can  be  obtained  from  equations  (62a)  and (62b) using  the  appropriate  power  spectrum 

2 

sYY* 
Recalling  that a is  an  even  function  and a is an odd function,  in  the  par- 

n, R n, 1 
ticular  fast  Fourier  program  available (HARM/DHARM), we only  need  find a and 
a from n = 0 t o  N/2. Then a 
values were only  needed  for n = 0 t o  n = N/2; since h 

e tc . ,  a w a s  equal  to  zero. 

n, R 
n, 1 

- 
(N/2)+1, R - a(N/2)- 1, R' etc.  Similarly,  for a 

n, 1 
(N/2)+1, I -"(N/2)- 1, 1' 

0, I 

Pressure  Gradient  Signal  Results 

2 1/2 
The  normalized  fluctuating  pressure  gradient y / (  y ) is shown  in  figure 6 for  

different  values of X. The  pressure  gradient  power  spectrum  used  in  obtaining  these 
resul ts  was assumed  to be a stationary  Gaussian  Markoff  process  and is given  by  equa- 
tion (29)  and  plotted  in  figure 3. The  results  were  calculated  for  values of N of 128 and 
XT taken as 100. P 

The  curves  were  computer  plotted  by  joining  the  output  points  by  dotted  lines.  Since 
the  spectrum  for  the  higher  fluctuating  rate  parameter X = 100 is  greater  at   the  higher 
frequencies, as can  be  seen  in  figure 3, the  resulting  pressure  signal  for  large X has  
many  more  fluctuations  and  crossing of the 0 value  line  per  unit  time  than is the  case 
for  the  lower  values of X.  

Generating  Velocity  Signal  From  Pressure  Signal 

The  method of calculating  the  velocity  signal  from  the  pressure  signal is as follows. 
We can  write,  similar  to  equation  (59), 

Vk = 2 (bn, 
cos - 2 7 r n k + b  sin- 

N n, I N n=-w 
(6 5) 
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where b n, R 
is an  even  function  and b is an  odd function. From  equations (9) 

and (50) we can write 
n, 1 

v u -  N b n  T  p =f I ,  o=n2 n/T )(anTp) 

or 

b n = H  a n n  

This  can  be  written as 

bn = b n, R + ib n, I = (Hn, + iHn, I)(an, + ia ) n, 1 

The  components of bn a r e  then  given  by 

bn,  R = an, RH,, R - an,  IHn, I ( 6 8 4  

bn, I = an,  IHn, R + an, RH,, I (Gab) 

At  n = 0, since a,, I = Ho, I = 0, it follows  that  bo, = a,, RHo, and b = 0. Thus, 
by  finding  the  values of a and a for a given signal yt, as discussed  previously, 
we can  use  equations  (68a)  and  (68b)  to  obtain  the new values  b  and bn, I, which  can 
be  used  in  equation (65) to  obtain  the  velocity  signal  v  using  the fast Fourier  transform 
program . 

0 9 1  

n, R n, 1 
n, R 

We can  see  from  equation (68) that  the  mean  values of b and  b a re   zero .  
Also,  since a and a are  normally  distributed,  b and  b a re   a l so   nor -  
mally  distributed.  The  variance of bn  can  be  seen  to be 

n, R  n, 1 
n, R n, 1 n, R n, 1 

2 2 2 2 2  
(bn,  R) = (an,  R)Hn,  R + (an,  I)Hn, I 

Since (a,, R)  equals ( a2 ) , it  can  be  seen  that 
n, 1 
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except at n = 0 when 

2 2 2 
(bo, R) = (ao, R) Ho, R 

The  spectrum  in  this  case would be given as in  equation (56) by 

so that 

2T (b2) = S (n) IHn 1 '  
P n  YY (7 3) 

except  at n = 0 when 

This  shows  that b and b cannot  only be found from an but  can  be  picked n, R n, 1 
directly  from a normal  distribution  with a variance of  (b,) given  by  equation (73) as in 
the  case of an values. 

2 

In  figure 6 the  normalized  fluctuating  velocity  at  the  centerline of the  channel 

vy=o. 5 A ( v 2 )  1'2)y=o. 5 is plotted as solid  lines.  These  results  were  calculated  from 
equation (65) using  the  fast  Fourier  transform  routine.  The  coefficients  bn  were found 
from  equation (68), which gives  the  values of bn  in t e r m s  of values of an which a re   the  
coefficients of the  random  pressure  fluctuations.  These  were  randomly  chosen  by  equa- 
tion (64). Thus,  the  velocity  shown  by  the  solid  line on each  graph is caused  by  the  pres- 
sure  fluctuation  shown as the  dotted  line on the  same  graph.  Notice  that all the  curves 
have  been  normalized  by  their own root  mean  square  values. 

For  low values of A,  the  shapes of the  curves are very  similar  but  there is a small  
time  lag  in  the  velocity  curve  compared  to  the  pressure  curve.  This  time  lag  can be 
explained  by  postulating a distortionless  frequency  response  function H' with a distor- 
tionless  gain  factor I H(w) I = I H I t and a distortionless  phase  factor cp' = -uto (see 
eq. (11)). 
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Then  equation (9) can be written as 

Taking  the  inverse  transform  and  using  the  time  shifting  theorem (ref. 10, p. 14) gives 

This  shows,  for  the  distortionless  response  function,  the  velocity  signal lags the  pres- 
sure  signal by a time  increment  to,  while  the  amplitude is changed  by  an  amount I H 1 '. 

function we can  see  from  figure 2 that  for  small  angular  frequencies  the  response  func- 
tion  approaches  the  distortionless  case. We can  calculate  the  time  lag  to  for  small 
angular  frequencies  by  solving  for q as w - 0. This  gives,  from  equation (ll), 

In  comparing  the  distortionless  frequency  response  function  to  the  present  response 

q w 4 0  = -w(O. 0781). Thus,  the  time  lag  between  the  velocity  and  pressure  signals  for 
small  w i s  given  by  to = 0. 0781. Thus,  in  figure 6 for  X = 1 we see  the  velocity  sig- 
nal is close  to  the  pressure  signal  with a small  time  lag  between  them.  This is because 
the  response  function is close  to  distortionless  for  small w and  the  pressure  signal 
for  small  X is concentrated  in  the  small w region  (see fig. 3). 

For the  higher  values of X we can see that  the  velocity  signal  does not  contain  many 
of the  higher  frequency  fluctuations  that  are  present  in  the  velocity  signal.  This is be- 
cause  the  gain  factor  (see fig. 3) has a high-frequency cutoff which  caused  the  velocity 
spectrum  to  have a similar  high-frequency cutoff.  Since a t  high X much of the  pressure 
spectrum is in  the  higher  frequencies,  these  higher  frequencies are not  transmitted  to 
the  velocity  signal. 

In figure 7, the  velocity  signal  at a given  position y in  the  channel,  normalized  by 
its root  mean  square  value  at  the  same y value, i s  plotted  at  two  different  values of y 
for  the  same  pressure  signal. For low values of X the  curves  near  the  center of the 
channel (y = 0. 5) are very  similar  to  that  nearer  the  wall  (y = 0.01). This  happens be- 
cause  the  transfer  function  for  small w is close  to  distortionless.  The  velocity  signals 
near  the  wall,  although of a smaller  amplitude  than  the  velocity  signal  near  the  center of 
the  channel  (see  normalizing  factor  in  fig. 4), both  have  almost  identical  shapes. At the 
higher  values of X we see  that  the  centerline  signal  fluctuates  much less than  the  veloc- 
ity  signal  near  the wall. This is due  to  the  fact  that  the  gain  factors  for y close  to  the 
wall are  f latter  and do  not  have as strong a high-frequency cutoff as the  gain  factors 
near  the  center.  This  causes  the  velocity  spectrum  near  the wall (y = 0. 1) given  in  fig- 
u re  3 to  be flatter  and  extend  to  higher  frequencies  than  the  velocity  spectrum  near  the 
center of the  channel. 
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At the  higher  values of X = 100, we  can  also  notice a t ime lag between  the  signals. 
This  effect is due  to  the  phase  factor  shown  in  figure 2. It  can be seen  that  the  phase 
factor  curves  for  the  signals  closer  to  the  wall  have  smaller  slopes  and so have a 
smaller  delay  time  than  the  velocity  near  the  center of the  channel. 

RESULTS AND CONCLUSIONS 

The effect of superimposing a randomly  fluctuating  pressure  gradient of a stationary 
Gaussian  hlarkovian  form  with a zero  mean  value upon a steady  pressure  gradient  will  
cause a randomly  fluctuating  velocity  component to be  superimposed  over  the  steady 
flow in a channel.  The  mean  value of the  velocity  fluctuation is zero.  The  mean  square 
value of the  velocity  fluctuations  which is a measure of the  amplitude of the  fluctuations 
will  be  highest  in  the  center of the  channel  and  reduce  to  zero at the  wall.  Also,  the 
slower  the rate of the  pressure  fluctuations,  the  greater  the  amplitude of the velocity 
fluctuations. 

The  frictional  power  loss  in  pumping  the  fluid is increased  by  the  pressure  fluctua- 
tions,  the  slower  pressure  fluctuations  giving  larger  power  losses. 

The normalized  velocity  signal  values  were  very  similar  to  the  normalized  pres- 
sure  signal  but with a dimensionless  time  lag  to of about 0.0781 for  low pressure  fluc- 
tuation  rates. At the  higher  pressure  fluctuation rates the  higher  frequencies of the 
pressure  signal  did not appear  in  the  velocity  signal. 

Comparison of the velocity  signals  across  the  channel  normalized  by  its  local  root 
mean  square  value  showed  that  for low  fluctuation rates  in  the  pressure  signal  the  values 
of the  normalized  velocity  near  the wall  were almost  identical  to  the  normalized  veloc- 
ities  near  the  center of the  channel.  However,  at  the  higher  pressure  fluctuation  rates 
the  higher  frequency  fluctuations  present  in  the  velocities  near  the wal l  do not appear  in 
the  velocities  near  the  center of the  channel,  and  the  velocities  near  the  center of the 
channel  lag  the  velocities  near  the wall. 

The  random  pressure  signal  function w a s  generated  by a Fourier series expansion 
where  the  coefficients were randomly  chosen  by  model  sampling  from a frequency  dis- 
tribution  whose  parameters are given  by the power  spectrum of the  signal.  By  use of 
the fast Fourier  transform  method of computation  the  function  can be rapidly  evaluated 
from its Fourier  coefficients.  The  Fourier  expansion of the  fluctuating  pressure  signal 
can  then be used  in  the  momentum  equation  to  calculate  the  randomly  varying  velocity at 
various  positions  from  the wall. These  velocity  results  can be useful  when  the  details 
of a randomly  fluctuating  velocity  distribution  in a channel are needed, as for  instance 
in  convective  heat-transfer  problems. 

This method  can  also be useful  in  analyzing  other  linear  and  nonlinear  differential 
equations of systems  with  random  behavior.  By  generating the input  random  signal  from 
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a given  spectrum,  the  differential  equations  can be solved  numerically  to  give  the  output 
random  signal,  which  then  can be studied  numerically  to  obtain its statistical  behavior. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  November 24, 1970, 
129-01. 
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Figure 6. - Normalized  fluctuating  pressure  gradient  and  velocity  signal. 
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